On Tauber’s Second Tauberian Theorem
نویسندگان
چکیده
We study Tauberian conditions for the existence of Cesàro limits in terms of the Laplace transform. We also analyze Tauberian theorems for the existence of distributional point values in terms of analytic representations. The development of these theorems is parallel to Tauber’s second theorem on the converse of Abel’s theorem. For Schwartz distributions, we obtain extensions of many classical Tauberians for Cesàro and Abel summability of functions and measures. We give general Tauberian conditions in order to guarantee (C, β) summability for a given order β. The results are directly applicable to series and Stieltjes integrals, and we therefore recover the classical cases and provide new Tauberians for the converse of Abel’s theorem where the conclusion is Cesàro summability rather than convergence. We also apply our results to give new quick proofs of some theorems of Hardy-Littlewood and Szász for Dirichlet series.
منابع مشابه
H"{o}lder summability method of fuzzy numbers and a Tauberian theorem
In this paper we establish a Tauberian condition under which convergence follows from H"{o}lder summability of sequences of fuzzy numbers.
متن کاملA Tauberian theorem for $(C,1,1)$ summable double sequences of fuzzy numbers
In this paper, we determine necessary and sufficient Tauberian conditions under which convergence in Pringsheim's sense of a double sequence of fuzzy numbers follows from its $(C,1,1)$ summability. These conditions are satisfied if the double sequence of fuzzy numbers is slowly oscillating in different senses. We also construct some interesting double sequences of fuzzy numbers.
متن کاملIngham Tauberian Theorem with an Estimate for the Error Term
We estimate the error term in the Ingham Tauberian theorem. This estimation of the error term is accomplished by considering an elementary proof of a weak form of Wiener's general Tauberian theorem and by using a zero-free region for the Riemann zeta function. 1. Introduction. As an important application of his general Tauberian theorem (GTT), in 1932, Wiener [6] gave a new proof of the prime n...
متن کاملFirst and higher order uniform dual ergodic theorems for dynamical systems with infinite measure
We generalize the proof of Karamata’s Theorem by the method of approximation by polynomials to the operator case. As a consequence, we offer a simple proof of uniform dual ergodicity for a very large class of dynamical systems with infinite measure, and we obtain bounds on the convergence rate. In many cases of interest, including the Pomeau-Manneville family of intermittency maps, the estimate...
متن کاملA Tauberian Theorem for Laplace Transforms with Pseudofunction Boundary Behavior
The prime number theorem provided the chief impulse for complex Tauberian theory, in which the boundary behavior of a transform in the complex plane plays a crucial role. We consider Laplace transforms of bounded functions. Our Tauberian theorem does not allow first-order poles on the imaginary axis, but any milder singularities, characterized by pseudofunction boundary behavior, are permissibl...
متن کامل